Artikel
Judul : Penerapan Metode Item-Based Collaborative Filtering untuk Rekomendasi Wisata Kuliner Kota Bandung
Abstrak : Abstract-The Ministry of Tourism sets Bandung as one of culinary destinations in Indonesia. The number of bistros, restaurants and cafes in Bandung according to The Department of Culture and Tourism Bandung in 2017 is 396 and can grow every year. Tourists who visit Bandung will be faced many choices of culinary places. Based on the result of research about tourist visits and culinary business in Bandung, the majority of tourists who culinary in Bandung visited culinary places based on the recommendation of their family or friends, it is indicates that recommendation is important in culinary tour. These days role of technology is very supportive and can be used to solve this problem with develop a culinary tourism recommendation system in Bandung city using item-based collaborative filtering. In this study, researcher focused on more specific method which is item-based collaboration filtering to search for similarity between culinary tourism places. Then, centered cosine to count similarity, and weighted sum is used to predict rating weight for culinary tourism in Bandung city. Designs of the culinary tourism recommendation system of Bandung city successfully made using waterfall development method and can be implemented on android based devices. Functional system tested using black box and using mean absolute error testing method with an average error value of 1.445.
Penulis : Muhammad Adam Dzulqarnain
Keyword : item-based collaborative filtering, centered cosine, weighted sum, recommendation, culinary tourism
Referensi : [1] C. F. Samparaya, “Kemenpar Tetapkan 3 Destinasi Kuliner Indonesia,” Kompas, 2018. [Online]. Available: https://travel.kompas.com/read/2018/09/20/083600927/kemenpar-tetapkan-3-destinasi-kuliner-indonesia. . [Accessed: 08-Jan-2019]. [2] Dinas Kebudayaan dan Pariwisata Kota Bandung, “Data Rumah Makan, Restoran, Cafe Di Kota Bandung,” Open Data Kota Bandung, 2018. [Online]. Available: http://data.bandung.go.id/dataset/rumah-makan-restoran-cafe-di-kota-bandung. [Accessed: 21-Jan-2019]. [3] S. Motivasi, W. Kuliner, L. Di, K. Bandung, and Y. Haryati, “Studi motivasi wisata kuliner lokal di kota bandung yati haryati,” 2016. [4] E. I. Riyani, D. Ayuni, and A. Mulyana, “Menumbuhkan Loyalitas Pengunjung Kuliner Wisata di Bandung,” DERIVATIF, vol. 9, no. 1, pp. 37–52, 2015. [5] W. P. Rahardja, M. B. Talim, and A. K. Purnomo, “ULTIMA Management | ISSN 2085-4587,” vol. 10, no. 1, pp. 7–17, 2018. [6] DPRD Kota Bandung, “Rencana Induk Pembangunan Kepariwisataan Derah Tahun 2012-2025,” DPRD Kota Bandung, 2017. [Online]. Available: https://dprd.bandung.go.id. [Accessed: 11-Nov-2017]. [7] A. Kurniawan, “Sistem Rekomendasi Produk Sepatu Dengan Menggunakan,” Semin. Nas. Teknol. Inf. dan Komun., vol. 2016, no. Sentika, pp. 610–614, 2016. [8] S. Uyun, I. Fahrurrozi, and A. Mulyanto, “Item Collaborative Filtering untuk Rekomendasi Pembelian Buku secara Online,” Jusi, vol. 1, no. 1, pp. 63–70, 2011. [9] A. Josi, L. A. Abdillah, and Suryayusra, “Penerapan teknik web scraping pada mesin pencari artikel ilmiah,” 2014. [10] Kusrini, Tuntutan Praktis Membangun Sistem Informasi. Yogyakarta: Andi Offset, 2007. [11] Y. Bassil, “A Simulation Model for the Waterfall Software Development Life Cycle,” vol. 2, no. 5, 2012. [12] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Item-based collaborative filtering recommendation algorithms,” Proc. 10th Int. Conf. World Wide Web, WWW 2001, pp. 285–295, 2001. [13] Z. Salam Patrous and S. Najafi, “Evaluating Prediction Accuracy for Collaborative Filtering Algorithms in Recommender Systems,” 2016. [14] H. Dewanto and A. T. Wibowo, “Analisis dan Implementasi Prediksi Rating pada Memory-based Collaborative Filtering dengan Menggunakan Smoothing,” e-Proceeding Eng., vol. 2, no. 3, pp. 7716–7720, 2015.
File :